Section 2.4 Derivatives of Exponential Functions and Logarithms (Minimum problems: all odds)

In this section we will learn the rules to find derivatives of exponential functions and logarithmic functions.

Here are the rules to find the derivatives of exponential functions:

Derivatives of exponential functions with base e

$$f(x) = c e^{g(x)}$$

$$f'(x) = cg'(x)e^{g(x)}$$

Where "c" is a constant (number without a letter)

Derivatives of exponential functions with base a

$$f(x) = ca^{g(x)}$$

$$f'(x) = c\ln(a)g'(x)a^{g(x)}$$

(a is a constant, and a > 0)

Use the rules for derivatives of exponential functions with base "e" to find the derivative of:

 $f(x) = 5e^{x}$ Rule needed $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

In this function the *c* for the formula is the coefficient of 5.

c = 5

the exponent is considered the g(x) for the formula.

$$g(x) = x \qquad g'(x) = 1$$

$$f'(x) = cg'(x)e^{g(x)}$$

$$f'(x) = 5 * g'(x) * e^x = 5 * 1 * e^x$$

Answer: $f'(x) = 5e^x$

Use the rules for derivatives of exponential functions with base "e" to find the derivative of: $f(x) = e^{x^2}$

Rule needed

$$f(x) = ce^{g(x)}$$

$$f'(x) = cg'(x)e^{g(x)}$$
Where "c" is a constant (number without a letter)

$$f(x) = e^{x^2}$$

In this function the c for the formula is the coefficient of 1.

$$c = 1$$

the exponent is considered the g(x) for the formula.

$$g(x) = x^2 \qquad g'(x) = 2x$$

$$f'(x) = cg'(x)e^{g(x)}$$

$$f'(x) = 1 * g'(x) * e^{x^2}$$

$$f'(x) = 1 * 2x * e^{x^2}$$

Answer: $f'(x) = 2xe^{x^2}$

Use the rules for derivatives of exponential functions with base "e" to find the derivative of:

$$f(x) = 6e^{2x+3}$$

Rule needed

$$f(x) = ce^{g(x)}$$

$$f'(x) = cg'(x)e^{g(x)}$$

Where "c" is a constant (number without a letter)

In this function the *c* for the formula is the coefficient of 6.

c = 6

the exponent is considered the g(x) for the formula.

$$g(x) = 2x + 3$$
 $g'(x) = 2$

$$f'(x) = cg'(x)e^{g(x)}$$

$$f'(x) = 6 * g'(x) * e^{2x+3}$$

$$f'(x) = 6 * 2 * e^{2x+3}$$

Answer: $f'(x) = 12e^{2x+3}$

Example: Use the rules for derivatives of exponential functions with base "a" to find the derivative of:

 $f(x) = 5^x$

Rule needed $f'(x) = c \ln (a)g'(x)a^{g(x)}$

$$f(x) = 5^x$$

$$a = 5$$

$$c = 1$$

$$g(x) = x \qquad g'(x) = 1$$

$$f'(x) = c \ln (a)g'(x)a^{g(x)}$$
$$f'(x) = 1 * \ln(5)(1)5^{x}$$

Answer: $f'(x) = \ln(5) 5^x$

Example: Use the rules for derivatives of exponential functions with base "a" to find the derivative of:

 $f(x) = 5^{3x+7}$

Rule needed $f'(x) = c \ln (a)g'(x)a^{g(x)}$

a = 5

c = 1

$$g(x) = 3x + 7$$
 $g'(x) = 3$

$$f'(x) = c \ln (a) g'(x) a^{g(x)}$$

 $f'(x) = 1 * \ln(5) (3)5^x$

It looks better to me with the 3 written first, although it can left where it is at.

Answer: $f'(x) = 3\ln(5) 5^x$

Example: Find the derivative of: $y = 5xe^{6x^2}$

We need both the product rule along with the rule to find the derivative of the exponential function.

First factor $5x$	Second Factor e^{6x^2}
Derivative 5	Derivative $1 * 12x * e^{6x^2}$
	$12xe^{6x^2}$
cross multiply top down	cross multiply bottom up
$5x(12xe^{6x^2}) = 60x^2e^{6x^2}$	$5e^{6x^2}$

Add the expressions along the bottom row.

$$y' = 60x^2e^{6x^2} + 5e^{6x^2}$$

Factor out a 5

$$y' = 5(12x^2e^{6x^2} + e^{6x^2})$$

Factor our a e^{6x^2}

Answer: $y' = 5e^{6x^2}(12x^2 + 1)$

Here are the rules to find the derivatives of logarithmic functions.

Derivatives of Natural logs (Ln) f(x) = cln[g(x)] $f'(x) = \frac{cg'(x)}{g(x)}$ c is a constantNOTE: THERE IS NO LN IN THE DERIVATIVE OF A LN

Derivatives of logarithms of base b (b >0) $f(x) = clog_b[g(x)]$ $f'(x) = \frac{cg'(x)}{\ln(b)g(x)}$ c is a constant b > 0 Example: Use the rules for derivatives of natural log functions to find f'(x)

 $f(x) = \ln\left(7x^2\right)$

Rule needed f(x) = cln[g(x)] $f'(x) = \frac{cg'(x)}{g(x)}$ c is a constant

c = 1

 $g(x) = 7x^2$ g'(x) = 14x

$$f'(x) = \frac{1*14x}{7x^2}$$
$$f'(x) = \frac{14x}{7xx} = \frac{2}{x}$$

Answer: $f'(x) = \frac{2}{x}$

Example: Use the rules for derivatives of natural log functions to find f'(x)

$$f(x) = \ln (5x + 4)$$

Rule needed

$$f(x) = cln[g(x)]$$

$$f'(x) = \frac{cg'(x)}{g(x)}$$

c is a constant

c = 1

$$g(x) = 5x + 4$$
$$g'(x) = 5$$

$$f'(x) = \frac{1*5}{5x+4}$$

Answer: $f'(x) = \frac{5}{5x+4}$ (fraction does not reduce)

Example: Use the rules for derivatives of logarithm base b functions to find f'(x)

$$f(x) = \log_3(5x)$$

 $\overline{f(x)} = clog_b[g(x)]$ $f'(x) = \frac{cg'(x)}{\ln(b)g(x)}$ c is a constant b > 0

c = 1b = 3

g(x) = 5xg'(x) = 5

$$f'(x) = \frac{1*5}{\ln(3)5x} = \frac{5}{5\ln(3)x}$$
 5'can cancel

Answer: $\frac{1}{\ln(3)x}$

Example: Use the rules for derivatives of logarithm base b functions to find f'(x)

$$f(x) = log_2(3x + 8)$$

$$f(x) = clog_b[g(x)]$$

$$f'(x) = \frac{cg'(x)}{\ln(b)g(x)}$$

$$c \text{ is a constant}$$

$$b > 0$$

c = 1b = 2

$$g(x) = 3x + 8$$
$$g'(x) = 3$$

$$f'(x) = \frac{1*3}{\ln(2)(3x+8)} = \frac{3}{\ln(2)(3x+8)}$$
 nothing reduces

Answer:
$$\frac{3}{\ln(2)(3x+8)}$$

Example: Find the derivative of

f(x) = 7xln(2x)

Product rule is needed as there is multiplication and both factors have an x.

First factor 7x	Second Factor $\ln(2x)$
	Derivative $\frac{1*2}{2x}$
	$\frac{1}{x}$
Derivative 7	
cross multiply top down	cross multiply bottom up
$7x\left(\frac{1}{x}\right) = 7$	<mark>7ln (2x)</mark>

 $f'(x) = 7 + 7\ln(2x)$ Answer: $f'(x) = 7(1 + \ln(2x))$

#1-22: Find the derivative of each exponential function

1) $y = e^{3x}$ 2) $y = e^{7x}$

Rule needed

$$f(x) = ce^{g(x)}$$

$$f'(x) = cg'(x)e^{g(x)}$$

Where "c" is a constant (number without a letter)

Answer
$$\frac{dy}{dx} = 7e^{7x}$$

3)
$$f(x) = e^{4x+5}$$

4)
$$f(x) = e^{9x-1}$$

$$f(x) = ce^{g(x)}$$
$$f'(x) = cg'(x)e^{g(x)}$$

Where "c" is a constant (number without a letter)

Answer $f'(x) = 9e^{9x-1}$

5)
$$f(t) = e^{t^2 + 3t}$$

6)
$$f(t) = e^{7t^2 - 3t + 1}$$

 $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

answer: $f'(t) = (14t - 3)e^{7t^2 - 3t + 1}$

7)
$$f(x) = 2e^{4x}$$

8)
$$f(x) = 8e^{2x+5}$$

$$f(x) = ce^{g(x)}$$
$$f'(x) = cg'(x)e^{g(x)}$$

Where "c" is a constant (number without a letter)

answer: $f'(x) = 16e^{2x+5}$

9)
$$y = x^2 e^x$$

10)
$$y = 3x^4 e^x$$

Rule needed for the "e"

$$f(x) = ce^{g(x)}$$

 $f'(x) = cg'(x)e^{g(x)}$
Where "c" is a constant (number without a letter)

Also need the product rule as both factors have an x.

First factor	Second Factor
Derivative	<mark>Derivative</mark>
cross multiply top down	cross multiply bottom up

answer:
$$y' = 3x^3e^x(x+4)$$

11)
$$k(y) = (y+2)e^{3y}$$

12) $f(y) = (y+3)e^{5y}$

Rule needed for the "e"

 $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

Also need the product rule as both factors have an x.

First factor	Second Factor
Derivative	<mark>Derivative</mark>
cross multiply top down	cross multiply bottom up

Answer: $f'(y) = e^{5y}(5y + 16)$

- 13) $f(x) = xe^{5x}$
- 14) $f(x) = xe^{3x}$

Rule needed for the "e"

$$f(x) = c e^{g(x)}$$

 $f'(x) = cg'(x)e^{g(x)}$

Where "c" is a constant (number without a letter)

Also need the product rule as both factors have an x.

First factor	Second Factor
Derivative	<mark>Derivative</mark>
cross multiply top down	cross multiply bottom up

answer: $f'(x) = e^{3x}(3x+1)$

15)
$$f(t) = \frac{t^2}{e^t}$$

16) $f(t) = \frac{t^3}{e^t}$

Rule needed for the "e" $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

Also need the quotient rule because of the division.

<mark>Denominator</mark>	Numerator
Derivative	<mark>Derivative</mark>
cross multiply top down	cross multiply bottom up

answer
$$f'(t) = \frac{-t^3 + 3t^2}{e^t} = \frac{-t^2(t-3)}{e^t}$$

17)
$$f(x) = \frac{x+2}{e^x}$$

18)
$$f(x) = \frac{x+5}{e^x}$$

Rule needed for the "e"

$$f(x) = ce^{g(x)}$$

 $f'(x) = cg'(x)e^{g(x)}$
Where "c" is a constant (number without a letter)

Also need the quotient rule because of the division.

<mark>Denominator</mark>	Numerator
Derivative	Derivative
cross multiply top down	cross multiply bottom up

answer
$$f'(x) = \frac{-1x-4}{e^x} = \frac{-1(x+4)}{e^x}$$

19) $f(x) = 3^x$

20) $f(x) = 7^x$

Rule needed $f'(x) = c \ln (a)g'(x)a^{g(x)}$

answer: $f'(x) = \ln(7) 7^x$

21)
$$f(x) = 3^{5x}$$

22) $f(x) = 7^{2x}$

Rule needed $f'(x) = c \ln (a)g'(x)a^{g(x)}$

answer: $f'(x) = 2 \ln(7) 7^{2x}$

#23-38: Find the derivative of each logarithmic function

23)
$$y = \ln(4x)$$

24) $y = \ln(2x)$

Rule needed f(x) = cln[g(x)] $f'(x) = \frac{cg'(x)}{g(x)}$ c is a constant

answer
$$y' = \frac{1}{x}$$

25)
$$y = \ln(8x^2)$$

26)
$$y = \ln (3x^2)$$

Rule needed
 $f(x) = cln[g(x)]$
 $f'(x) = \frac{cg'(x)}{g(x)}$
 c is a constant

answer:
$$\frac{dy}{dx} = \frac{2}{x}$$

27)
$$f(x) = \ln(2x - 3)$$

28)
$$f(x) = \ln(5x - 2)$$

Rule needed f(x) = cln[g(x)] $f'(x) = \frac{cg'(x)}{g(x)}$ c is a constant

answer:
$$f'(x) = \frac{5}{5x-2}$$

29) y = 3x ln(5x)

30) $y = 8x \ln(9x)$

Rule needed for In f(x) = cln[g(x)] $f'(x) = \frac{cg'(x)}{g(x)}$ c is a constant

Also need product rule

First factor	Second Factor
Derivative	<mark>Derivative</mark>
cross multiply top down	cross multiply bottom up

answer:
$$y' = 3(\ln(5x) + 1)$$

31)
$$f(y) = y^2 \ln(3y)$$

32)
$$f(y) = y^2 \ln(7y)$$

$$f(x) = cln[g(x)]$$
$$f'(x) = \frac{cg'(x)}{g(x)}$$
$$c \text{ is a constant}$$

Also need product rule

First factor	Second Factor
Derivative	<mark>Derivative</mark>
cross multiply top down	cross multiply bottom up

answer $f'(y) = y(2\ln(7y) + 1)$

33)
$$f(x) = log_3(x)$$

34) $f(x) = log_5(x)$
 $f(x) = clog_b[g(x)]$
 $f'(x) = \frac{cg'(x)}{\ln(b)g(x)}$
 $c \text{ is a constant}$
 $b > 0$

answer:
$$f'(x) = \frac{1}{\ln(5)x}$$

35)
$$f(x) = log_3(2x + 7)$$

36)
$$f(x) = log_5(9x + 2)$$

 $f(x) = clog_b[g(x)]$ $f'(x) = \frac{cg'(x)}{\ln(b)g(x)}$ c is a constantb > 0

answer $f'(x) = \frac{9}{\ln(5)(9x+2)}$

#37-42:

a) Find all values of x where the tangent line is horizontal

b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.

37) $y = e^{x^2}$

38) $y = e^{5x^2}$

a) Find derivative, then solve derivative equal to zero.

Rule needed for the derivative $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

a) *answer*: x = 0 b) y = 1

#37-42:

a) Find all values of x where the tangent line is horizontal

b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.

39) $y = 3xe^x$

40) $y = 5xe^x$

a) Find derivative, then solve derivative equal to zero.

Rule needed for the "e" $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

Also need the product rule as both factors have an x.

First factor	Second Factor
Derivative	<mark>Derivative</mark>
cross multiply top down	cross multiply bottom up

a) Find all values of x where the tangent line is horizontal

b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.

41) $y = xe^{2x}$

42) $y = xe^{3x}$

a) Find derivative, then solve derivative equal to zero.

Rule needed for the "e" $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

Also need the product rule as both factors have an x.

First factor	Second Factor
Derivative	Derivative
cross multiply top down	cross multiply bottom up

answer: a)
$$x = -\frac{1}{3}$$
 b) $y = \frac{-1}{3e}$